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Adaptive Vision Tasks
• Detection

• SNoW-based face detector [NIPS99]
• Weakly-supervised object localization with progressive domain adaption [CVPR16]
• Every pixel matters: center-aware feature alignment for domain adaptive object detector [ECCV20]

• Tracking
• Incremental visual tracking [NIPS04]
• Multiple instance tracking [CVPR09]
• Online tracking benchmark [CVPR13]
• Tracking persons-of-interest via adaptive discriminative features [ECCV16]

• Recognition
• Domain adaption for face recognition in unlabeled videos [ICCV17]
• Cross-domain few-shot classification [ICLR20]
• Generalized convolutional forest networks for domain generalization and visual recognition [ICLR20]
• Long-tailed visual recognition from a domain adaptation perspective [CVPR20]

• Segmentation
• Learning adaptive structured output space for semantic segmentation [CVPR18]
• Adversarial learning for semi-supervised semantic segmentation [BMVC18]
• Pixel-level domain transfer with cross-domain consistency [CVPR19]

2



Learning to Adapt Structured Output Space for Semantic Segmentation

Yi-Hsuan Tsai    Wei-Chih Hung    Samuel Schulter    Kihyuk Sohn   Ming-Hsuan Yang   Manmohan Chandraker 

CVPR 2018



Domain Adaption

[Hoffman, et al., arXiv 2016]
Examples
• City A -> City B
• Synthetic (source) -> Real (target)

Semantic segmentation



Synthetic v.s. Real

[Richter, et al., ECCV 2016]

GTA5 Cityscapes

[Cordts, et al., CVPR 2016]

Data augmentation: rendered images by graphics engines or translation methods



Adversarial Domain Adaptation

[Hoffman, et al., arXiv 2016]

Feature adaptation/
alignment

Is feature adaptation the best choice for structured output?



Feature Space Adaptation

Segmentation Network
Source Image

Target Image
Shared

Goal: align features between two domains 
DA

conv6

Feature dimensions: 1024, 2048, 4096, …



Feature Space Adaptation

Segmentation Network
Source Image

Target Image
Shared

Source
Feature

Target
Feature

Source Prediction
Source Output

ℒ!"#

Discriminator Network

ℒ$%&

Is feature adaptation effective for semantic segmentation?

Adversarial Learning

DA

conv6



Motivation
Source Domain Target Domain

Large gap in
appearance

Small gap in
spatial layout

• Semantic segmentations from the source and target domains should be similar
• Consider semantic segmentation results as structured output



Our Method: Output Space Adaptation

Segmentation Network
Source Image

Target Image
Shared DA

Source
Feature

Target
Feature

Source Prediction

ℒ!"#

Domain Adaptation Module

Discriminator Network

ℒ$%&

Softmax
Outputs

Main difference: adversarial learning in the output space

Dimension of output space: 30 for Cityscapes



Our Method: Output Space Adaptation

Segmentation Network
Source Image

Target Image
Shared DA

Source
Feature

Target
Feature

Source Prediction

ℒ!"#

Domain Adaptation Module

Discriminator Network

ℒ$%&

Softmax
Outputs

Multi-level adaptation: account for low-level features

DA



Multi-level Adversarial Learning

Cross-entropy loss Adversarial loss (only on target)

Segmentation Network (G) Training Discriminator (D) Training Target

Source

Min-max objective

Minimize loss for G

Maximize the probability of target 
predictions being considered as source 
ones

𝑃 = 𝐺 𝐼
segmentation softmax output



Feature adaptation

Image transform using 
CycleGAN

Output space 
adaptation

Baseline: VGG-16 -> why not use a stronger baseline?

GTA5 (synthetic) -> Cityscapes (real)



Without adaptation

Output space 
adaptation

GTA5 (synthetic) -> Cityscapes (real)



Comparisons to upper-bounds (fully-supervised)?

Only differs a bit

GTA5 (synthetic) -> Cityscapes (real)



Varies a lot

Comparisons to upper-bounds (fully-supervised)?

GTA5 (synthetic) -> Cityscapes (real)



Varies a lot

Training stability?

GTA5 (synthetic) -> Cityscapes (real)



Training stability?

Only differs a bit

GTA5 (synthetic) -> Cityscapes (real)



Feature adaptation

Synthia (synthetic) -> Cityscapes (real)



City A (real) -> City B (real)



Qualitative Comparisons



Before adaption

Our results



Summary
• We propose a domain adaptation method for structured outputs (i.e., semantic 

segmentation)
• Adversarial learning in the output space
• Multi-level objective function
• A strong baseline to shrink the domain gap

• Future goals: learn better feature representations
• Different tasks? (e.g., optical flow, depth estimation)
• Multi-tasks/domains?

• Code available at https://github.com/wasidennis/AdaptSegNet

https://github.com/wasidennis/AdaptSegNet


Adversarial Learning for Semi-Supervised 
Semantic Segmentation
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Semi-supervised Semantic Segmentation

Small amount of labeled data Large amount of unlabeled data

How do we exploit these data? 25



Motivation: Exploit Structured Context

Ground truth

Model Prediction

Can we push them to have similar structure contexts?

26

Labeled Data

Labeled/Unlabeled Data

Image

Image

Apply adversarial learning to the output space.



Adversarial Loss

Model Prediction

Ground truth

Discriminator Network

GT or Prediction?

Adversarial (Inverse)
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Adversarial Loss: Fully Convolutional Discriminator

Segmentation Network

Discriminator Network

ℒ&'
ℒ(

ℒ)*+
Input Image

Label Map

Confidence Map
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Discriminator network (based on FCN) take class probably map 
from segmentation or ground-truth as inputs 



Semi-supervised Loss
• High confidence of being ground truth: trustworthy predictions
• Self-taught Learning: learn from high confidence areas

29

Threshold Cross entropy with pseudo label



𝑇!"#$ vs. Selected Prediction Accuracy 
• Dataset: Cityscapes
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Proposed Framework

Segmentation Network

Discriminator Network

ℒ&'
ℒ(

ℒ)*+

ℒ,'-.

Input Image

Label Map

Confidence Map
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Results on PASCAL VOC 2012
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Results on Cityscapes
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Qualitative Comparisons: PASCAL VOC 2012
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Qualitative Comparisons: Cityscapes
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Summary
• Adversarial learning could be applied for Semantic segmentation
• Performance improvement on fully-supervised setting
• Exploit discriminator confidence maps of unlabeled data

• Code available at : https://github.com/hfslyc/AdvSemiSeg

Segmentation Network

Discriminator Network

ℒ!"
ℒ#

ℒ$%&

ℒ'"()

Input Image

Label Map

Confidence Map

36

Github

https://github.com/hfslyc/AdvSemiSeg


CrDoCo: Pixel-level Domain Transfer 
with Cross-Domain Consistency
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Unsupervised Domain Adaptation
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CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency
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Figure 1: Applications of the proposed method. Our method has the applications ranging from semantic segmentation (top
row), depth prediction (middle row), to optical flow estimation (bottom row).

Abstract

Unsupervised domain adaptation algorithms aim to

transfer the knowledge learned from one domain to another

(e.g., synthetic to real images). The adapted representa-

tions often do not capture pixel-level domain shifts that are

crucial for dense prediction tasks (e.g., semantic segmenta-

tion). In this paper, we present a novel pixel-wise adversar-

ial domain adaptation algorithm. By leveraging image-to-

image translation methods for data augmentation, our key

insight is that while the translated images between domains

may differ in styles, their predictions for the task should be

consistent. We exploit this property and introduce a cross-

domain consistency loss that enforces our adapted model to

produce consistent predictions. Through extensive experi-

mental results, we show that our method compares favor-

ably against the state-of-the-art on a wide variety of unsu-

pervised domain adaptation tasks.

1. Introduction

Deep convolutional neural networks (CNNs) are ex-
tremely data hungry. However, for many dense predic-
tion tasks (e.g., semantic segmentation, optical flow esti-
mation, and depth prediction), collecting large-scale and di-
verse datasets with pixel-level annotations is difficult since
the labeling process is often expensive and labor intensive
(see Figure 1). Developing algorithms that can transfer the
knowledge learned from one labeled dataset (i.e., source
domain) to another unlabeled dataset (i.e., target domain)
thus becomes increasingly important. Nevertheless, due to
the domain-shift problem (i.e., the domain gap between the
source and target datasets), the learned models often fail to
generalize well to new datasets.

To address these issues, several unsupervised domain
adaptation methods have been proposed to align data dis-
tributions between the source and target domains. Existing
methods either apply feature-level [39, 26, 44, 42, 15, 14]

• Input: A source dataset (labeled) and a target dataset (unlabeled)
• Goal: Transfer knowledge learned from source domain to target domain



Main Idea
• Images in different domains may have different styles
• Task predictions should be the same
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CrDoCo: Cross-Domain Consistency
• Pixel-level adversarial loss aligns image distributions between source and target domains
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CrDoCo: Cross-Domain Consistency
• Feature-level adversarial loss aligns distributions between source and target domains
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CrDoCo: Cross-Domain Consistency
• Task loss and consistency loss



CrDoCo: Cross-Domain Consistency
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Figure 3: Overview of the proposed method. Our model is composed of two main modules: an image translation network
(highlighted in gray) and two domain-specific task networks (highlighted in blue and green, respectively). The image trans-
lation network learns to translate input images from one domain to the other. The input and the translated images are then
fed to their corresponding domain-specific task networks to perform task predictions. Our main contribution lies in the use
of cross-domain consistency loss Lconsis for regularizing the network training.

As our task models produce different outputs for differ-
ent tasks, our cross-domain consistency loss Lconsis is task-

dependent. For depth prediction task, we use the `1 loss for
the cross-domain consistency loss Lconsis. For optical flow
estimation task, the cross-domain consistency loss Lconsis

computes the endpoint error between the two task predic-
tions.

3.4. Other losses
In addition to the proposed cross-domain consistency

loss Lconsis, we also adopt several other losses introduced
in [14, 48, 51] to facilitate the network training.

Task loss Ltask. To guide the training of the two task net-
works FS and FT using labeled data, for each image-label
pair (IS , ys) in the source domain, we first translate the
source domain image IS to IS!T by passing IS to GS!T

(i.e., IS!T = GS!T (IS)). Similarly, images before and
after translation should have the same ground truth label.
Namely, the label for IS!T is identical to that of IS which
is ys.

We can thus define the task loss Ltask for training the
two domain-specific task networks FS and FT using la-

beled data. For semantic segmentation, we calculate the

cross-entropy loss between the task predictions and the cor-
responding ground truth labels as our task loss Ltask. Like-
wise, the task loss Ltask is also task dependent. We use `1
loss for depth prediction task and endpoint error for optical
flow estimation.

Feature-level adversarial loss Lfeat
adv . In addition to im-

posing cross-domain consistency and task losses, we apply
two feature-level discriminators Dfeat

S (for source domain)
and Dfeat

T (for target domain) [51]. The discriminator Dfeat
S

helps align the distributions between the feature maps of IS
(i.e., fS) and IT!S (i.e., fT!S). To achieve this, we define
the feature-level adversarial loss in the source domain as

Lfeat
adv (XS , XT ;GT!S ,FS , D

feat
S )

= EIS⇠XS [log(D
feat
S (fS))]

+ EIT⇠XT [log(1�Dfeat
S (fT!S))].

(3)

Similarly, Dfeat
T aligns the distributions be-

tween fT and fS!T . This corresponds to another
feature-level adversarial loss in the target domain as
Lfeat
adv(XT , XS ;GS!T ,FT , Dfeat

T ).

Training

Testing Target 
Domain I" f"

#T



Experiments
• Synthetic-to-real adaptation

- Semantic segmentation
- Single-view depth prediction
- Optical flow estimation

• Cross-city adaptation
- Semantic segmentation



Synthetic-to-Real Adaptation
• Semantic segmentation 
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Method
GTA5! Cityscapes SYNTHIA! Cityscapes

mean IoU Pixel acc. mean IoU Pixel acc.

Synth. 22.9 71.9 18.5 54.6
DS [Dundar arXiv 18] 38.3 87.2 29.5 76.5
UNIT [Liu NeurIPS 17] 39.1 87.1 28.0 70.8
FCNs ITW [Hoffman arXiv 17] 27.1 - 17.0 -
CyCADA [Hoffman ICML 18] 39.5 82.3 - -
Ours w/o Lconsis 39.4 85.8 29.8 75.3
Ours 45.1 89.2 33.4 79.5

Method
Cityscapes! Cross-city

Rome Rio Tokyo Taipei

Cross-City [Chen ICCV 17] 42.9 42.5 42.8 39.6
CBST [Zou ECCV 18] 53.6 52.2 48.8 50.3
AdaptSegNet [Tsai CVPR 18] 52.2 49.5 46.9 47.5
Ours w/o Lconsis 51.0 48.9 45.9 46.8
Ours 55.1 50.4 51.2 47.9

Method
SUNCG! NYU-v2

Abs. Rel. # Sq. Rel. # RMSE #

Synth. 0.304 0.394 1.024
Baseline (train set mean) 0.439 0.641 1.148
T2Net [Zheng ECCV 18] 0.257 0.281 0.915
Ours w/o Lconsis 0.254 0.283 0.911
Ours 0.233 0.272 0.898



Semantic Segmentation Results

46

Input images Ground truth Ours w/o ℒ!"#$%$ Ours



Synthetic-to-Real Adaptation
• Single-view depth prediction
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Method
GTA5! Cityscapes SYNTHIA! Cityscapes

mean IoU Pixel acc. mean IoU Pixel acc.

Synth. 22.9 71.9 18.5 54.6
DS [Dundar arXiv 18] 38.3 87.2 29.5 76.5
UNIT [Liu NeurIPS 17] 39.1 87.1 28.0 70.8
FCNs ITW [Hoffman arXiv 17] 27.1 - 17.0 -
CyCADA [Hoffman ICML 18] 39.5 82.3 - -
Ours w/o Lconsis 39.4 85.8 29.8 75.3
Ours 45.1 89.2 33.4 79.5

Method
Cityscapes! Cross-city

Rome Rio Tokyo Taipei

Cross-City [Chen ICCV 17] 42.9 42.5 42.8 39.6
CBST [Zou ECCV 18] 53.6 52.2 48.8 50.3
AdaptSegNet [Tsai CVPR 18] 52.2 49.5 46.9 47.5
Ours w/o Lconsis 51.0 48.9 45.9 46.8
Ours 55.1 50.4 51.2 47.9

Method
SUNCG! NYUv2

Abs. Rel. # Sq. Rel. # RMSE #

Synth. 0.304 0.394 1.024
Baseline (train set mean) 0.439 0.641 1.148
T2Net [Zheng ECCV 18] 0.257 0.281 0.915
Ours w/o Lconsis 0.254 0.283 0.911
Ours 0.233 0.272 0.898



Depth Estimation Results
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Synthetic-to-Real Adaptation
• Optical flow estimation 
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Method
MPI Sintel! KITTI 2012 MPI Sintel! KITTI 2015

AEPE AEPE F1-Noc AEPE F1-all F1-all
train test test train train test

FlowNet2 [Ilg CVPR 17] 4.09 - - 10.06 30.37% -
PWC-Net [Sun CVPR 18] 4.14 4.22 8.10% 10.35 33.67% -
Ours w/o Lconsis 4.16 4.92 13.52% 10.76 34.01% 36.43%
Ours 2.19 3.16 8.57% 8.02 23.14% 25.83%



Optical Flow Results
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Figure 1: Visual results of optical flow estimation. We present the optical flow estimation results of our method.
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Cross-City Adaptation
• Semantic segmentation

51

Method
GTA5! Cityscapes SYNTHIA! Cityscapes

mean IoU Pixel acc. mean IoU Pixel acc.

Synth. 22.9 71.9 18.5 54.6
DR [Tobin IROS 17] 25.5 73.8 19.2 57.9
DS [Dundar arXiv 18] 38.3 87.2 29.5 76.5
UNIT [Liu NeurIPS 17] 39.1 87.1 28.0 70.8
FCNs ITW [Hoffman arXiv 17] 27.1 - 17.0 -
CyCADA [Hoffman ICML 18] 39.5 82.3 - -
Ours w/o Lconsis 39.4 85.8 29.8 75.3
Ours 45.1 89.2 33.4 79.5

Method
Cityscapes! Cross-city

Rome Rio Tokyo Taipei

Cross-City [Chen ICCV 17] 42.9 42.5 42.8 39.6
CBST [Zou ECCV 18] 53.6 52.2 48.8 50.3
AdaptSegNet [Tsai CVPR 18] 52.2 49.5 46.9 47.5
Ours w/o Lconsis 51.0 48.9 45.9 46.8
Ours 55.1 50.4 51.2 47.9

Method
SUNCG! NYU-v2

Abs. Rel. # Sq. Rel. # RMSE #

Synth. 0.304 0.394 1.024
Baseline (train set mean) 0.439 0.641 1.148
T2Net [Zheng ECCV 18] 0.257 0.281 0.915
Ours w/o Lconsis 0.254 0.283 0.911
Ours 0.233 0.272 0.898



Summary
• Cross-domain consistency

52

• Application agnostic

• State-of-the-art performance
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Few-Shot Classification
• Given: the few examples of novel categories (support set)
• Predict: the category of unlabeled data (query set)

54

?

Support set
𝐒 = 𝑥2 , 𝑦2 , … , (𝑥3 , 𝑦3 )

Query set
𝐐 = 𝑥342, … , 𝑥5



Cross-Domain Few-Shot Classification
Testing domain (CUB)

?

Training domain (mini-ImageNet)

?

55

Metric-based few-shot methods do not perform well when the domain gap is large
Note that during the training stage, we do not have access to the data in the testing domain



Cross-Domain Few-Shot Classification

56

Chen et al. A Closer Look at Few-Shot Classification. ICLR, 2019

Train & test on the same domain Cross-domain

Significant performance drop!



Domain Gap in Feature Space
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Meta-training (mini-ImageNet)

𝑀
?

?

𝐸

?

?
𝐸 𝑀

Meta-testing (CUB)

𝐸
Metric functions do not generalize 

to unseen feature distributions



Diversify the Feature Distribution
• Address few-shot classification under the domain generalization setting
• Augment features in the training domain to simulate various distributions 

58

𝑀
?

?

𝑀
?

?

With the more diverse 
feature distribution in the 
training stage, we can 
improve the generalization 
ability of the metric 
function



Feature-Wise Transformation

59

channel-wise operation 

𝛾 𝛽

𝛾~𝑁(1, softplus(𝜃&)) 𝛽~𝑁(0, softplus(𝜃'))

How do we set hyper-parameters 𝜃5 = {𝜃6 , 𝜃7}?

ℝ5 ℝ5

ℝ5×7×8 ℝ5×7×8

Conditional normalization via affine transformation is widely used
in image stylization, image synthesis, and domain adaptation

𝑧̂5,8,7 = 𝛾×𝑧5,8,7 +𝛽5



Learning to Generalize

60

?
Pseudo-seen

?
Pseudo-unseen 𝜽𝒇

𝒕#𝟏

𝐿:3 𝜽𝒆𝒕#𝟏, 𝜽𝒎𝒕#𝟏
?

𝐸('(,()( 𝑀(*(

𝐸('(+, 𝐿:;

?

𝑀(*(+,

Training
Domains

1. Sample a pair of pseudo-seen and pseudo-unseen domains
2. Optimize parameters of a metric-based model with the feature-wise 

transformation using pseudo-seen domain 
3. Remove feature-wise layer and compute loss of the optimized model on 

pseudo-unseen domain 
4. Update the parameters using the pseudo-unseen loss as it indicates how 

well the optimized model generalizes to unseen domain



Experiments
• Datasets (domains): mini-ImageNet, CUB, Cars, Places, Plantae
• Applied methods: MatchingNet, RelationNet, GNN
• Feature-wise transform used after batch norm in each residual block

• Scenario 1: train on mini-ImageNet 👉 test on others
• Hand-tuned feature-wise transformation

• Scenario 2: select one as testing set 👉 train model on all other sets
• Learning-to-learned feature-wise transformation
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Scenario 1
• Train on mini-ImageNet 👉 test on others
• Hand-tuned feature-wise transformation
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Scenario 2
• Train on multiple training sets 👉 test on one set
• LFT: use learning-to-learn method to determine parameters 
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Scenario 2 (5-Shot Classification Results)
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Baseline Feature-wise transformation Learned feature-wise transformation
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Scenario 2 (5-Shot Classification Results)
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Visualization of Feature Space

Hand-tuned FT Learned FTw/o FT
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Summary
• Feature-wise transformation

• Learning-to-generalize algorithm

• Code and dataset available at bit.ly/CrossDomainFewShot
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𝛾 𝛽

𝛾~𝑁(1, softplus(𝜃!)) 𝛽~𝑁(0, softplus(𝜃"))

?
Pseudo-seen 𝐿!" 𝜽𝒆𝒕%𝟏, 𝜽𝒎𝒕%𝟏

?
Pseudo-unseen 𝜽𝒇

𝒕%𝟏

?
𝐸!#$ ,!%$ 𝑀!&$

?

𝐸!#$'( 𝐿!)𝑀!&$'(

Training
Domains

https://bit.ly/CrossDomainFewShot
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Problem Setting

Supervised Learning
Source Domain

Detector Predictions Ground Truth
(Source only)
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Target Domain
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Domain Adaptation
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Experimental Results (Cityscapes → Foggy Cityscapes)

Input Image

Center-aware Map (𝐹4)

Center-aware Map (𝐹5)

Center-aware Map (𝐹6)

Detection Results



Experimental Results (Sim10k → Cityscapes)

Input Image
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Center-aware Map (𝐹5)
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Detection Results



Concluding Remarks
• Use fundamental tools for new tasks
• Adversarial learning
• Structured output
• Enforcing constraints
• Incremental learning
• Mining high-confidence samples 
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